

e-Infrastructure to provide digital tools for e-Learning and e-Science to the FCH Community

Karlsruhe Institute of Technology

Institute of Nuclear- and Energy Technologies (IKET)

Thomas Jordan; Olaf Jedicke; Giovanni Cinti₍₁₎, Evelina Slavcheva₍₂₎

[WHEC 2018; Rio de Janeiro 17th – 22nd June 2018]

(1) University of Perugia (Italy)

(2) Bulgarian Academy of Science (Bulgaria)

Content

- General Target and Aim
- General Objectives (overview of structure)
- e-Laboratory (e-engineering, e-science)
- Explicit Examples
- e-Learning (LMS)
- e-Learning (more specifics)
- Collaboration
- e-infrastructure (implementation)
- Conclusion

General Target (problem)

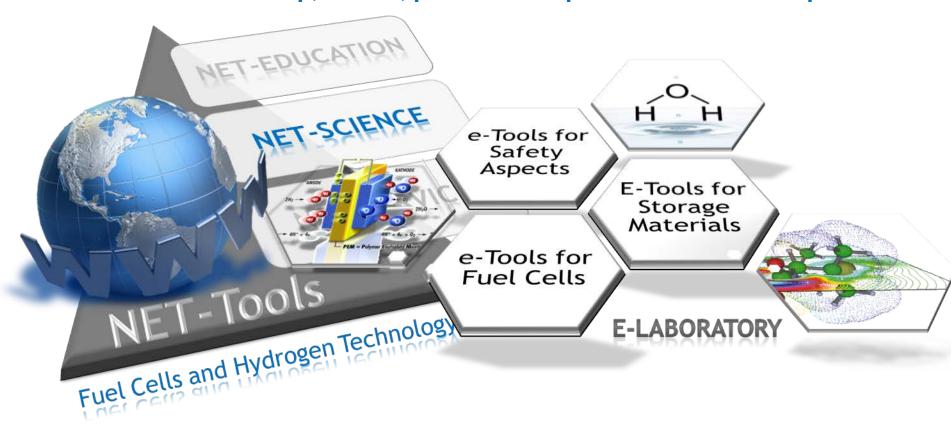
Education

of the late of the state of the rechnologies

Most Education

Trainers, Lectures, Professors

students, Industrial Employees Scif


Information ' J.g. Companies, Investors, Politicians)

General Aim (graphical overview)

NET-Tools is to develop, realize, promote and provide a common e-platform

General Objectives

MET-

Databases

e-Laborator

Simulation

e-tools

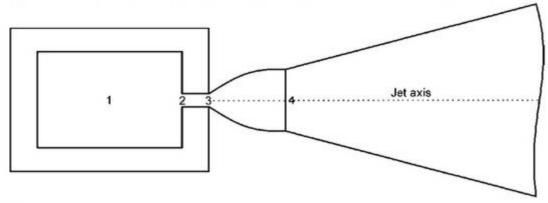
Encyclopaedia on Fundamentals

e-Laboratory

- Development of an e-Laboratory Platform subdivided into:
- e-Engineering Toolbox
 - Modelling and simulation of FCH related technical aspects
 - Guidelines and brief handbooks of e-tools
- 🥯 e-Science Toolbox
 - Modelling and simulation of FCH relevant phenomena
 - Database of results received from done experiments
 - Database related CFD programming (validation and verification of codes)
 - Guidelines
- Database
 - Repository of done experiments and results
 - Guidelines and handbooks

e-Engineering (samples of tools)

	Renewable energy system (RES) tools	1. Design and optimization of hybrid RES-hydr Simulation of SOFC based on natural gas as fuel						
	- Fuel cells (FC) tools -	- 2. Energy balances and hydrogen costs for various electrolysis techniques						
		- 3. Cell and stack models for both fuel cells and electrolysis						
		4. Thermo-mechanical models to prodict lifetime of high temperature FCs and electrolysis						
	- Storage tools -	1. Storage material propertie Cell and stack models for both fuel cells and electrolysis						
		- 2. gProms thermal design of storage tanks optimization (http://www.psenterprise.com/gproms.html).						
	FC integrated into CHP tools	— 1. Simulation of FC system integrated into mCHP application, including electrolyser operation						
e-Engineering		1. Under-expanded jet parameters model						
		Forced ventilation system parameters 2. Adiabatic and isothermal model of blowdown of storage tank dynamics Forced ventilation system parameters						
		- 3. Flame length correlation and three hazard distances for jet fires						
		4. Cincilarity law for comparation down in hydronic commanded and wader commanded into and water for the formal distances.						
		Adiabatic and isothermal model blowdown of storage tank dynamics						
		- 6. Passive ventilation in an enclosure with one vent: uniform hydrogen concentration						
		7. Mitigation of uniform mixture deflagration by venting technique						
		0.5						
	Safety engineering tools	Calculation of upper limits of hydrogen inventory in closed space						
		- 10. Effect of buoyancy on decrease of hazard distance for unignited releases						
		- 11. Pressure peaking phenomenon for ignited releases						
		- 12. Upper limit of hydrogen inventory in closed space						
		- 13. Mitigation of localised non-uniform deflagration by venting						
		- 14. Blowdown time as a function of storage pressure, volume, and TPRD diameter						
		- 15. Radiation from hydrogen fireball after high-pressure hydrogen tank rupture in a fire						
		- 16. Effect of buoyancy on hazard distances for jet fires						
		17.Calculation of choked flow for stagnation conditions in vapor, liquid or supercritical regimes.						


e-Engineering (explicit sample)

Cyber Laboratory

Underexpanded jet parameters

The model describes parameters in an underexpanded jet through characteristic stages of its development - in reservoir (1), orifice (3), and effective nozzle diameter (4). The model is based on Abel-Noble equation of state for hydrogen; conservation equations for mass and energy; assumption that at state (4) (so called "effective nozzle diameter") pressure is equal to the ambient one and velocity is equal to the local sound speed. The model does not account pressure losses in the nozzle (between states (2) and (3)).

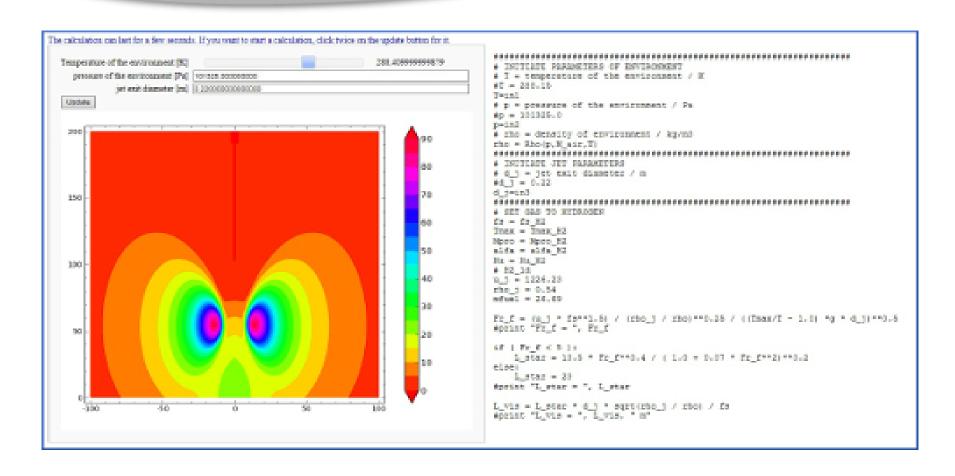
Reference:

Free eBook: V. Molkov Fundamentals of Hydrogen Safety Engineering", www.BookBoon.com, October, 2012

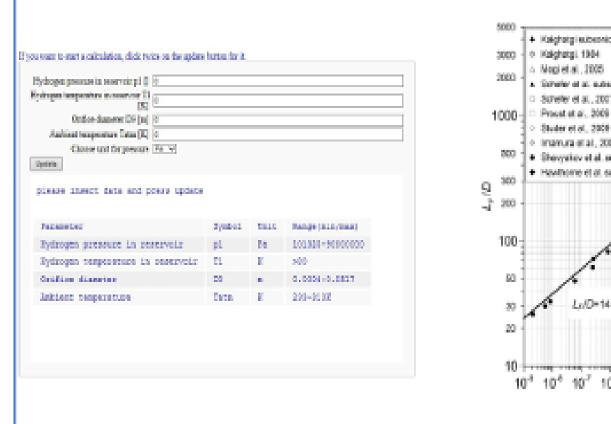
Units for pressure input:	[bar]	
Pressure in tank:	700	[bar]
Temperature in tank:	240	[K]
Orifice diameter;	2	[m]
Ambient pressure:	650	[bar]

e-Engineering (explicit sample)

Result - Underexpanded jet parameters


INPUT VALUES	77 1 1	200	
Pressure in tank:	700.0	[bar]	
Hydrogen temperature in reservoir:	240.0	[K]	
Orifice diameter:	2.0	[m]	
Ambient pressure:	650.0	[bar]	

OUTPUT VALUES		
Density in the tank:	45,80589 [kg/m ³]	
Density at the orifice:	27,68593 [kg/m ³]	
Pressure in orifice:	26240224,60627 [Pa]	
Velocity in orifice:	1300,72777 [m/s]	
Temperature at the orifice:	180,87414 [K]	
Diameter of effective nozzle exit:	1,69233 [m]	
Density in effective nozzle exit:	49,12897 [kg/m ³]	
Velocity in effective nozzle exit:	1023,76062 [m/s]	
Temperature in effective nozzle exit:	199,5842 [K]	
Mass flow rate:	113134,56842 [kg/s]	


e-Engineering (flame radiation)

e-Engineering (flame length and separation distance for jet fires)

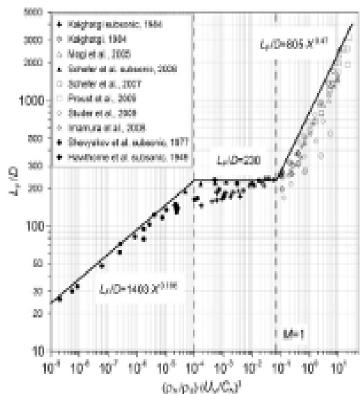
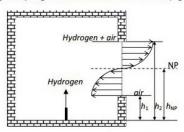


Figure 1 = Dimensionless (conservative) consists of the hydrogen jet flames (in formulas shown in figure "X" denotes the similarity group (ρ₁(γ) · (Us/Cs)² (Malkov 8, Suffers, 2013).



e-Engineering (model for passive ventilation in an enclosure with one vent)

MODEL DESCRIPTION FOR STEADY-STATE HYDROGEN UNIFORM CONCENTRATION

The neutral plane (NP) is a horizontal plane where pressure inside and outside an enclosure are equal. In general case of passive ventilation of the enclosure with release of gas lighter than air, the neutral plane is located at or below the half height of the vent for steady-state conditions. Below NP air enters the enclosure and above NP lighter hydrogen-air mixture exits the enclosure (Fig. 1, Jeft).

Figure 1. Flow velocity through the vent for a case when neutral plane is between the lower edge and half height of the vent.

1.STEADY-STATE HYDROGEN UNIFORM CONCENTRATION FOR THE GIVEN RELEASE RATE AND VENT SIZE

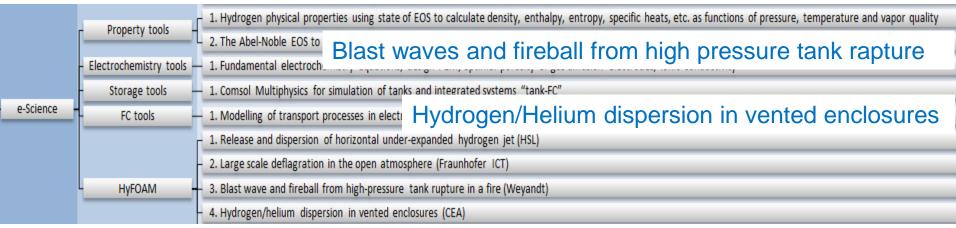
You can calculate the mass flow rate by using the hydrogen jet parameters model

If you want to start a calculation, click twice on the update button for it.

Hydrogen mass flow rate m [kg/s]	0
Ambient pressure p2 [choose]	0
Ambient temperature T ₂ [K]	0
Vent height H [m]	0
Vent width W [m]	0
Discharge coefficient CD [-]	0.600000000
Choose unit for pressure	Pa ▼
Update	
olease insert data	

e-Engineering (computing mass balances at the anode & cathode of an operating PEM fuel cell)

mant to start a uniquistics, click todos on the aplate fertira for it				
Cell nutbox area 3 (scb) (ii				Simple tool for computing mass balances at the anode & the cathode o
Number of cells a DND 1				operating PEM fuel cell (CEA)
Current despite LTA/sold in				about the fearth
Stark temperature T (K) T				
Asodo rato to energiamenty \$160 (NB) 1				125 C 180 C 180 C 180
Cathodic nations stratelessates (1902 (SSE))				Introduction / description
Assolic pressure (infet) pa [Phi] n				
Celiadai promues (ade) pa [24] [1				
Assetic procuse-drop cyto [74] 1				From user data about the call or stack operating conditions (for instance stoichiemetric ratios, re-
Cettode promov drop Apr. [Pd.]				hursdity), the model computes the traut data that is needed for designing a fuel cell system of
Appollo relative foundaty HPLs (No.)				bench (for instance mass flows for the different species, requirements for gases hydre
Caladic statics bandley HRs [N] [2				\\.
action of produced veter that crosse the assatirance o [SD] I speak				4,7
lesse insect some data				Andrew Common
lesse insect some data Ennanceur	Egraturi	Dean	Dange (Min/Max)	Access Common
	Eyekel	Sear gr	Sange (min/max) 5/10/4 / 800/18/4	Access and the second s
Exemples	_			
December of Calls	8	12.	891094 / 80091094	$H_1 \rightarrow 2H^+ + 2e^-$
Exemples Cell surface area Purber of cells Contest detector Stock temperature	8	10 10	5*10*4 / 880*18*4 1 / 1000 1 / 5*10*4 290:15 / 661:15	
Executive Cell surface area Purber of cells Correct details	3 5	84814 80 84	5*10*4 / 880*18*4 1 / 1000 1 / 8*10*4	
Estimator Cell surface area Pubber of cells Contest details Stock temperature	5 5 7	E E	5*10*4 / 880*18*4 1 / 1000 1 / 5*10*4 290:15 / 661:15	
Cell puriate area Purber of cells Conrect decally Stock temperature Enough secun to stolkhoometry	5 5 1 7 80°5	80 84814 80 84	5*10*4 / 880*18*4 1 / 1000 1 / 5*10*4 290:16 / 661:15 1-01 / 18	$H_1 \rightarrow 2H^+ + 2e^-$ 0 0 0 0 0 0 0 0 0 0
Establishment Cell sanishe area Pusher of cells Conrest detailsy Stack temperature Assons ratio to statishoometry Cechodis ratio to statishoometry	5 5 1 7 50% 50%	80 846.4 80 84	8*10*4 / 880*18*4 1 / 1000 1 / 8*10*4 290.16 / 661.18 1-01 / 18 1-2 / 10	
Escaparary Ocil sanface area Pusher of calls Conrect detailsy Stock tamperature Escals satis to staishometry Cathodis patio to staishometry Escals pressure (Inlet)	5 5 7 7 80% 50%	80 80 80 80 81 80 81	8*10*4 / 880*18*4 1 / 1000 1 / 8*10*4 280.16 / 661.15 1-01 / 10 1-2 / 10 15*8 / 4*10*8	$H_1 \rightarrow 2H^+ + 2e^-$ $\frac{1}{3}O_2 + 2H^+ + 2e^- \rightarrow H_1O$ Accord and the second surface of
Escapeaner Octl surface area Pumber of calls Contest debatty Stack temperature Escale satis to stainbowertry Contests presence (inlet) Contests presence (inlet) Escale presence (inlet) Escale presence desp Contests presence desp	5 5 7 7 50% 50% 7,	97 90 9797 2 90 90 98 98 98	8*10*4 / 880*18*4 1 / 1000 1 / 8*10*4 290.15 / 661.15 1-03 / 16 1-2 / 10 10*8 / 4*18*8 18*6 / 4*18*8	$H_1 \rightarrow 2H^+ + 2e^-$ $\frac{1}{2}O_2 + 2H^+ + 2e^- \rightarrow H_1O$ According to the second state of the second state o
Escapeanur Ocil sunface acce Pumber of calls Contest debatty Stack temperature Escale sette to statishometry Cachedia sette to statishometry Escale presence (inlet) Cachedia presence (inlet) Escale presence dop	5 5 7 7 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%	80 80 80 80 80 80 80 88	8*10*4 / 880*18*4 1 / 1000 1 / 8*10*4 199.16 / 644.15 1-01 / 18 1-2 / 10 10*8 / 4*10*8 13*6 / 4*10*8 0 / 0.8*50*8	$H_1 \to 2M^+ + 2a^-$
Escapeaner Octl surface area Pumber of calls Contest debatty Stack temperature Escale satis to stainbowertry Contests presence (inlet) Contests presence (inlet) Escale presence (inlet) Escale presence desp Contests presence desp	5 5 7 5 5 7 5 5 7	80 80 80 80 80 80 80 80 80	8*10*4 / 880*18*4 1 / 1000 1 / 8*10*4 290.16 / 640.18 1-01 / 18 1-2 / 10 10*8 / 4*10*8 0 / 0.8*20*8 0 / 0.8*20*8	$H_1 \to 2 M^+ + 2 \sigma^-$



e-Science (samples of tools)

Thermo-physical properties of Hydrogen

Release and dispersion phenomena

e-Science (explicit sample)

Description

$$\alpha(\tau, \delta) = \alpha^{0}(\tau, \delta) + \alpha^{r}(\tau, \delta) \qquad \tau = \frac{T_{c}}{T} \qquad \delta = \frac{\rho}{\rho_{c}}$$

$$\alpha^{0} = \ln \delta + 1.5 \ln \tau + a_{1} + a_{2}\tau + \sum_{k=3}^{N} a_{k} \ln[1 - \exp(b_{k}\tau)]$$

$$\alpha^{r}(\tau, \delta) = \sum_{i=1}^{l} N_{i}\delta^{d_{i}}\tau^{t_{i}} + \sum_{i=l+1}^{m} N_{i}\delta^{d_{i}}\tau^{t_{i}} \exp(-\delta^{p_{i}})$$

$$+ \sum_{i=m+1}^{n} N_i \delta^{d_i} \tau^{t_i} \exp[\varphi_i (\delta - D_i)^2 + \beta_i (\tau - \gamma_i)^2]$$

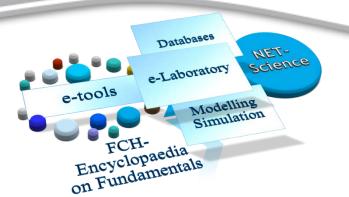
$$P(T,\rho) = \rho RT \left[1 + \delta \left(\frac{\partial \alpha^r}{\partial \delta} \right)_{\tau} \right] \qquad \qquad Z(T,\rho) = \frac{P}{\rho RT} = 1 + \delta \left(\frac{\partial \alpha^r}{\partial \delta} \right)_{\tau}$$

Complexity: Iterations required to find ρ from P, T.

e-Science (explicit sample)

Description (continued)

$$\begin{split} h(T,\rho) &= RT \bigg\{ \tau \bigg[\bigg(\frac{\partial \alpha^0}{\partial \tau} \bigg)_{\delta} + \bigg(\frac{\partial \alpha^r}{\partial \tau} \bigg)_{\delta} \bigg] + \delta \bigg(\frac{\partial \alpha^r}{\partial \delta} \bigg)_{\tau} + 1 \bigg\} \\ s(T,\rho) &= R \bigg\{ \tau \bigg[\bigg(\frac{\partial \alpha^0}{\partial \tau} \bigg)_{\delta} + \bigg(\frac{\partial \alpha^r}{\partial \tau} \bigg)_{\delta} \bigg] - \alpha^0 - \alpha^r \bigg\} \\ c_p(T,\rho) &= c_v + R \frac{\bigg[1 + \delta \bigg(\frac{\partial \alpha^r}{\partial \delta} \bigg)_{\tau} - \delta \tau \bigg(\frac{\partial^2 \alpha^r}{\partial \delta \partial \tau} \bigg) \bigg]^2}{\bigg[1 + 2\delta \bigg(\frac{\partial \alpha^r}{\partial \delta} \bigg)_{\tau} + \delta^2 \bigg(\frac{\partial^2 \alpha^r}{\partial \delta^2} \bigg)_{\tau} \bigg]} \\ w(T,\rho) &= \sqrt{\frac{RT}{M} \bigg[1 + 2\delta \bigg(\frac{\partial \alpha^r}{\partial \delta} \bigg)_{\tau} + \delta^2 \bigg(\frac{\partial^2 \alpha^r}{\partial \delta^2} \bigg)_{\tau} - \frac{\bigg[1 + \delta \bigg(\frac{\partial \alpha^r}{\partial \delta} \bigg)_{\tau} - \delta \tau \bigg(\frac{\partial^2 \alpha^r}{\partial \delta \partial \tau} \bigg) \bigg]^2}{\tau^2 \bigg[\bigg(\frac{\partial^2 \alpha^0}{\partial \tau^2} \bigg)_{\delta} + \bigg(\frac{\partial^2 \alpha^r}{\partial \tau^2} \bigg)_{\delta} \bigg]} \bigg]} \end{split}$$



General Objectives

e-Learning LMS

- Development of an e-Educational Platform subdivided into:
- e-Learning
 - Conventional Learning Management System (LMS)
 - Technical features to support users concerning communication, planning, exchange of documents, etc.
 - Quality assurance (probably review)
 - Guidelines
- e-Repository of FCH relevant information
 - Database
 - Documentations
 - e-books ?
 - Guidelines

E-Learning (explicit example)

- Educational materials
 - Course materials
 - Survey of existing course materials
- Specific Courses (Master Courses) in collaboration with TeacHy
 - Course Curricula (University level)
 - Content descriptions (based on modules)
 - Specific educational course materials
 - List of European Universities providing the master course (faculties, professors, lectures, etc.)
 - Access for students and teachers (lectures)
- e-Learning for Industrial Use
 - Typical industrial demands
 - Industrial level (technicians and engineers)
 - Facing industrial problems and specific education

Complementary to TeacHy

Teaching Fuel Cell and Hydrogen Science and Engineering Across Europe within Horizon 2020

- Development of Course Curricula
- Harmonisation of Course Curricula
- Development of Course Content
 - Development of Course Materials
- Compilation to co
- Complemental Le

- Development of e-Platform
- Development of e-Tools
- e-Laboratory
- (engineering tools and scientific tools)
- e-Education/
- e-model lectures
- Database
- Business concept

E-Learning (more specific)

- Provide a comprehensive platform for online courses (MOOCs) for teaching on technologies on various levels (from vocational to academic education) with innovative features compared to existing online education platforms
- Provide an overview and incorporate existing educational materials and important players in the field of fuel cells and hydrogen, industry and academia
- Provide online courses as first examples in relevant areas for the sector and analyze their impact. Suggested areas are (subject to Advisory Board discussion):
 - Basis to hydrogen (physical (also thermodynamically) and chemical behavior, economic and ecological aspects)
 - Basic processes of hydrogen production and technologies
 - Transportation, storage and handling of hydrogen as an energy carrier
 - Complete Fuel Cell technology, systems and applications

E-Learning (more specific)

- Start compiling/hosting online courses/digital from other education and training institutions beyond the NET-Tools consortium
- Develop tools and guidelines for acceptance and certification of online/digital education

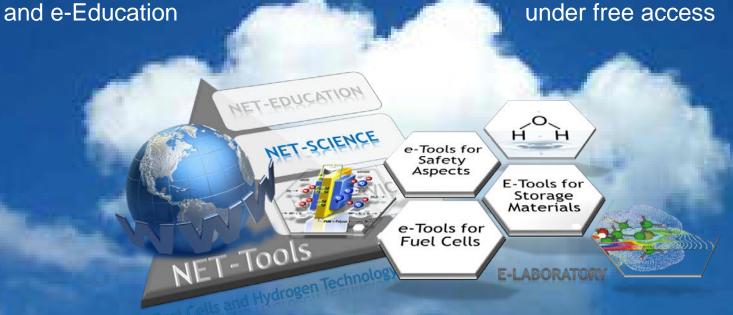
Direct Collaboration and Inputs

- HySafe (Network of Excellence)
- HyFOAM
- 8 H2FC (Research Infrastructure Project)
- SUSANA Project (FCH-Joint Undertaking)
- TeacHy (FCH-Joint Undertaking)
- International Institutions (e.g. DOE, Japan)
- Hydrogen Europe (industry grouping)
- Hydrogen Europe Research (research grouping)
- others

Direct Collaboration and Inputs

- Expert Workshop (2018)
 - Stakeholders from Industry
 - Stakeholders from Academia
 - Advisory Board Members
 - Others
- Two Educational Schools (2018 and 2019)
 - To enrol and test NET-Tools e-platform on practical level (in operando)
 - > Feedback for further improvement and development
- Flying Teachers
 - To enrol and test the acceptance of new teaching strategy in combination with NET-Tools
 - H2FC (Research Infrastructure Project)
- Newsletter

NET-Tools Conclusions



Development and compilation of specific e-tools

Development of e-Laboratory (scientific and engineering basis)

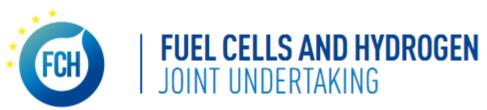
Development of e-Education (repository and LMS)

Development of e-Platform (cloud based) to provide e-Laboratory

TO PROVIDE an EUROPEAN DIGITAL PLATFORM to the FCH Community

NET-Tools Consortium

Tools


Acronym	KIT coordinator leader WP 1	Membership
Karlanuher institut für Technologie	Karlsruher Institute of Technology GERMANY (KIT) Research Organisation	ON.ERGHY
Acronym	PersEE leader WP 2	
PersEE	PersEE FRANCE Small and Medium Enterprise (SME)	Hydrogen Europe
Acronym	NCSRD	
At A	National Center For Scientific Research DEMOKRITOS GREECE	ON.ERGHY
Tot Di	University (Higher Education)	
Acronym	UU leader WP 3	
Ulster	University of Ulster UNITED KINGDOM	ON ERGHY
Ulster University	University (Higher Education)	MEDEANCH ON FULL CELLS & HYDROGEN
Acronym	DTU leader WP 4	
DTU 🗮	Danmarks Tekniske Univeritet DENMARK University (Higher Education)	ON.ERGHY MERIANE DO PUL CELLE E NYPROCEN
Acronym	IEES leader WP 5	
ŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽ	Bulgarian Academy of Science BULGARIA Institute of Electrochemistry and Energy Systems University (Higher Education)	ON.ERGHY
Acronym	UNIPG	
	Università Delgi Studi di Perugia ITALY University (Higher Education)	ON.ERGHY MERIANE DA PUL CELLE E NYTHOGEN
Acronym	EE leader industrial advisory board	

Basic Project Data and Acknowledgement

- Grant agreement No: 736648
- Action acronym: NET-Tools
- Action full title: Novel Education and Training Tools based on digital applications related to Hydrogen and Fuel Cell Technology
- Topic: Novel education and training tools
- Type of action: Coordination & support action
- Granting authority: Fuel Cells and Hydrogen 2
- Action duration (in months): 36
- Starting Date of Action: 1 March 2017
- NET-Tools gets funding from

Tools