

SUpport to SAfety ANalysis of Hydrogen and Fuel Cell Technologies

Verification type	Sensitivity Studies (Grid and Parameter sensitivity)
Database reference	SEN-5
Topic / Application	Nuclear Safety
	Hydrogen Release
	Helium
Physics	Release
	Jets
	Stratification
	Froude number
Summary	Primarily a validation study on the MiniPanda experimental
	facility but with useful grid refinement investigation
Description	This is primarily a validation paper exploring jet and stratified
	flows of application to nuclear safety engineering.
	Primarily the paper concerns validation of results with
	experimental data from the MiniPanda facility at ETH Zurich.
	However the paper also explores best practice approaches to
	CFD model development.
Case Title	APPLICATION OF THE MINIPANDA TEST CASE 'EROSION OF A
	STRATIFIED LAYER BY A VERTICAL JET' FOR CFD VALIDATION
Authors	Stephan Kelm et al
Year	2013
Online reference	
Case image	
Governing equations	
Results	

Grant agreement no.: FCH-JU-325386